Bronnenlijst

  • Ach T, Ben Haj Slama N, Gorchane A, et al. Explaining Long COVID: A Pioneer Cross-Sectional Study Supporting the Endocrine Hypothesis. J Endocr Soc. 2024;8(3):bvae003. Published 2024 Jan 11. doi:10.1210/jendso/bvae003

  • Appelman B, Charlton BT, Goulding RP, et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat Commun. 2024;15(1):17. Published 2024 Jan 4. doi:10.1038/s41467-023-44432-3

  • Bar-Tana J. mTORC1 syndrome (TorS): unifying paradigm for PASC, ME/CFS and PAIS. J Transl Med. 2025;23(1):297. Published 2025 Mar 10. doi:10.1186/s12967-025-06220-z

  • Cervia-Hasler C, Brüningk SC, Hoch T, et al. Persistent complement dysregulation with signs of thromboinflammation in active Long Covid. Science. 2024;383(6680):eadg7942. doi:10.1126/science.adg7942

  • Charlton BT, Goulding RP, Jaspers RT, Appelman B, van Vugt M, Wüst RCI. Skeletal muscle adaptations and post-exertional malaise in long COVID. Trends Endocrinol Metab. Published online December 17, 2024. doi:10.1016/j.tem.2024.11.008

  • Charlton BT, Slaghekke A, Appelman B, et al. Skeletal muscle properties in long COVID and ME/CFS differ from those induced by bed rest. medRxiv 2025.05.02.25326885; doi:https://doi.org/10.1101/2025.05.02.25326885

  • Chen H-J, Appelman B, Willemen H, et al. Transfer of IgG from Long COVID patients induces symptomology in mice. bioRxiv 2024.05.30.596590; doi: https://doi.org/10.1101/2024.05.30.596590

  • Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations [published correction appears in Nat Rev Microbiol. 2023 Jun;21(6):408. doi: 10.1038/s41579-023-00896-0.]. Nat Rev Microbiol. 2023;21(3):133-146. doi:10.1038/s41579-022-00846-2

  • Guarnieri JW, Dybas JM, Fazelinia H, et al. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med. 2023;15(708):eabq1533. doi:10.1126/scitranslmed.abq1533

  • Guo L, Appelman B, Mooij-Kalverda K, et al. Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection. EBioMedicine. 2023;94:104729. doi:10.1016/j.ebiom.2023.104729

  • Hansen KS, Jørgensen SE, Cömert C, et al. Genetic Landscape and Mitochondrial Metabolic Dysregulation in Patients Suffering From Severe Long COVID. J Med Virol. 2025;97(3):e70275. doi:10.1002/jmv.70275

  • Jurgens E, Biere-Rafi S, Hellemons M. Schadelijke Misvattingen over Long-COVID ontleed: geen ‘out of proportion’ maar ‘out of box’ denken bij patiënten met Long COVID. TBV over arbeid en gezondheid. Tijdschrift voor Bedrijfs- en verzekeringsgeneeskunde. 2024 jan 15

  • Lau RI, Su Q, Ng SC. Long COVID and gut microbiome: insights into pathogenesis and therapeutics. Gut Microbes. 2025;17(1):2457495. doi:10.1080/19490976.2025.2457495

  • Microbiome-center.nl. https://microbiome-center.nl/immuniteit-en-virusinfecties/

  • Molnar T, Lehoczki A, Fekete M, et al. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. Geroscience. 2024;46(5):5267-5286. doi:10.1007/s11357-024-01165-5

  • Monsalve DM, Acosta-Ampudia Y, Acosta NG, et al. NETosis: A key player in autoimmunity, COVID-19, and long COVID. J Transl Autoimmun. 2025;10:100280. Published 2025 Feb 21. doi:10.1016/j.jtauto.2025.100280

  • Newson L, Glynne S et al. Long Covid and female hormones. 2022. https://balance-menopause.com/uploads/2022/03/Long-COVID-and-female-hormones-factsheet.pdf

  • Newson L, Lewis R, O’Hara M. Long Covid and menopause - the important role of hormones in Long Covid must be considered. Maturitas. 2021;152(74). doi: 10.1016/j.maturitas.2021.08.026

  • Ranque B, Garner P, Allenbach Y, et al. Reply: Muscle abnormalities in Long COVID [published correction appears in Nat Commun. 2025 Mar 10;16(1):2358. doi: 10.1038/s41467-025-57761-2.]. Nat Commun. 2025;16(1):1490. Published 2025 Feb 11. doi:10.1038/s41467-025-56430-8

  • Rus CP. Disruptions in serotonin- and kynurenine pathway metabolism in post-COVID: biomarkers and treatment. Front Neurol. 2025;16:1532383. Published 2025 Feb 13. doi:10.3389/fneur.2025.1532383

  • Thapaliya K, Marshall-Gradisnik S, Eaton-Fitch N, Barth M, Inderyas M, Barnden L. Hippocampal subfield volume alterations and associations with severity measures in long COVID and ME/CFS: A 7T MRI study. PLoS One. 2025;20(1):e0316625. Published 2025 Jan 13. doi: 10.1371/journal.pone.0316625

  • Wong AC, Devason AS, Umana IC, et al. Serotonin reduction in post-acute sequelae of viral infection. Cell. 2023;186(22):4851-4867.e20. doi:10.1016/j.cell.2023.09.013

  • Woodruff MC, Bonham KS, Anam FA, et al. Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID. Nat Commun. 2023;14(1):4201. Published 2023 Jul 14. doi:10.1038/s41467-023-40012-7

  • Wu M, Ma L, Xue L, et al. Co-expression of the SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in human ovaries: Identification of cell types and trends with age. Genomics. 2021;113(6):3449-3460. doi:10.1016/j.ygeno.2021.08.012

  • Zhang D, Zhou Y, Ma Y, et al. Gut Microbiota Dysbiosis Correlates With Long COVID-19 at One-Year After Discharge. J Korean Med Sci. 2023;38(15):e120. Published 2023 Apr 17. doi:10.3346/jkms.2023.38.e120